

Reference Tool loaded in the spindle, Z axis at home (machine zero)
Z axis position displayed on DRO is measured from last Z axis Part Zero, and could be almost anything.
For this example, suppose that the Z axis DRO position reads +1.500 when Z is at home.

Reference Tool brought down to touch tool-measuring surface Use F1 to set Z Reference here

If the Z axis has moved down 2.9 " to reach the surface, then the Z DRO will read -1.400 here, and that is what will be shown on the screen as the Z Reference position.

Tool \#1 loaded in the spindle
Z is again at home, and no offset is active, so the Z axis DRO position reads +1.500 again.

Z Home (Machine Zero)

Reference Tool touching surface (Z Reference) Tool 1 touching surface

Height Offset Amount

Now we move the knee down 0.8", and go to measure T1 again...

Reference Tool loaded in the spindle, Z axis at home (machine zero)

If we have not yet changed the Z axis Part Zero location, then the DRO will still read +1.500 here

Reference Tool brought down to touch tool-measuring surface Use F1 to set Z Reference here

The Z axis has to move down 3.7" to reach the surface, so the Z DRO will read -2.200 here, and that is what will be shown on the screen as the new Z Reference position.

Tool \#1 loaded in the spindle

Z is again at home, and no offset is active, so the Z axis DRO position reads +1.500 again.

Tool \#1 brought down to touch tool-measuring surface
Use F2 to measure Height Offset H001 here
The Z axis has moved down 4.8 " to reach the surface with this tool, and the Z DRO will read -3.300
-3.300 minus -2.200 equals -1.100
Measured offset H001 is -1.100

